
! Hurwitz Report

Fresh Thinking on Databases
For Object Development

— Fresher Information Corporation

http://www.hurwitz.com

iii Executive Summary
This paper looks into the recent history, as well as the current and future popularity of object development,

takes a look at Fresher and its database Matisse, and considers Matisse’s prospects given the current market.

1 Finally, the Era of Objects Has Arrived
In 2002, object-oriented programming languages will exceed usage of all other programming languages.

2 Development and Database: A Marriage Made in OO Heaven?
Object databases promised the same value proposition as OO development, with design accuracy and

solution flexibility the leading benefits

3 Early to Market — The Object Database
Four primary inhibitors prevented object databases from achieving greater market penetration during the 1990s.

5 An Object Database Renaissance?
Driven to a large degree by the interest and popularity of object-oriented server technologies like J2EE and

Microsoft’s .NET, certainly conditions exist for object databases to make a compelling comeback.

6 Fresher’s Matisse Bridges the Object-SQL Gap
Fresher’s Matisse is a natural for high availability process manufacturing and other forms of complex real-time

applications solutions - particularly those built with C++, Java, C# or other object oriented languages.

8 Conclusion
Hurwitz Group believes that for many solutions in many organizations, Matisse will pay off in terms of shorter

time-to-market in the near-term due to shorter database design cycles, and lower TCO over the long-term due

to lower costs required for database maintenance and performance.

Fresh Thinking on Databases
For Object Development

— Fresher Information Corporation

http://www.hurwitz.com

A Hurwitz Group white paper written for:

Fresher Information Corporation
575 Market Street, 13th Floor
San Francisco, CA 94105
Tel: 415 356 8100
Fax: 415 357 4841
www.fresher.com

Published by:
Hurwitz Group, Inc.
111 Speen Street, Framingham, MA 01701 ! Telephone: 508 872 3344 ! Fax: 508 872 3355
Email: info@hurwitz.com ! Web: www.hurwitz.com

January 2002

© Copyright 2002, Hurwitz Group, Inc.
All rights reserved. No part of this report may be reproduced or stored in a retrieval system
or transmitted in any form or by any means, without prior written permission.

http://www.fresher.com
mailto:info@hurwitz.com
http://www.hurwitz.com

Fresher Information Corporation

© 2002 Hurwitz Group, Inc. Reproduction without permission strictly forbidden iii

EXECUTIVE SUMMARY

If corporate developers have shifted to using object-oriented

techniques, why not corporate database administrators (DBAs)? The

unique benefits promised by object databases in the mid-1990s, as the

natural database twin to object development, never disappeared. The

benefits did get clouded over somewhat by the slow rate at which

corporate developers adopted object-oriented techniques, plus the

lack of object databases’ support of SQL, which remains to this day the

lingua franca of structured data.

A new day may have dawned for object databases however, for object

development now rates as the norm, not the exception, in corporate IT

shops, and a few object database vendors have overcome some of the

limitations which prevented the pervasive use of object databases in

the mid-1990s. Hurwitz Group takes a look at Fresher and its database

Matisse, in this report, and considers Matisse’s prospects given the

current market.

The report first looks into recent history, in terms of the adoption of

object development, and the possibility of renewed interest, therefore,

in object databases. It also examines why object databases didn’t quite

become the market force many predicted for object databases in the

mid-1990s. Next it examines what an object database vendor might

need to offer in order to ride the current and future popularity of object

development, in order to create an object database renaissance, and

finally looks into how Fresher’s Matisse addresses these criteria.

Finally, the Era of Objects Has Arrived
It started in the late 1980s and promised to take over the world of software during the 1990s

— of course we are referring to objects. It didn’t quite happen as quickly as many pundits

thought, however. By the mid-1990s, rapid application development (“RAD”) tools, like Visual

Basic, Powerbuilder, and Delphi, had emerged as the programming market’s darlings. Strictly

speaking, these tools were at best “object-based,” and did not directly employ object-oriented

(“OO”) methodology (you could do it with Delphi, but many developers didn’t approach it that

way). Also by the mid-1990s, C++ had largely replaced C, but in name only. Many developers

were using C++ compilers, but really still writing C, only using object-oriented principles

where they were strictly enforced — and C++ in most cases offered an opt-in OO model.

Yet today, in early 2002, the era of objects has finally arrived. From a numeric perspective, a

glance at Figure 1 illustrates how object-oriented programming languages, in total, will exceed

usage of all other programming languages in 2002; and some would argue that the current

version of Visual Basic now uses a true OO development metaphor. What happened over the

past five years to make OO so prevalent?

! In latter 1995, a new, strictly OO language came onto the market, Java, which has

rapidly grown in popularity.

! Many of the C developers using C++ tools have switched to using the true OO

aspects of C++.

! Most universities changed their computer science curriculums during the 1990s to

teach OO methods.

! Companies began to get OO religion; the promise of improved productivity and

quality convinced many corporate IT departments to adopt OO, at least partially.

Fresher Information Corporation

© 2002 Hurwitz Group, Inc. Reproduction without permission strictly forbidden 1

Figure 1. Planned usage of programming languages.
Source: Hurwitz Group IT Decision-Makers Study, 2001, N=180, North America

Thus, in today’s programming market, OO tools, and corresponding OO-based server

architectures like Java 2 Enterprise Edition (J2EE) and Microsoft’s .NET, own the market

majority. The recent hype wave, which will slowly but certainly turn into a commercial wave,

about XML and Web Services will further propagate object-oriented computing.

Development and Database: A Marriage Made in OO Heaven?
Let’s go back to the mid-1990s again. Since objects were supposedly revolutionizing software

development, couldn’t they also offer a more modern alternative to the middle-aged relational

database? Several forward thinking software vendors thought so, and several object

databases were brought to market during this same mid-1990s timeframe.

Object databases promised the same value proposition as OO development, with design accuracy

and solution flexibility the leading benefits. For example, with OO development object designers

are able to emulate solutions using the native language of the solution, rather than the language

of the computer. Pretend you were designing a software solution to run an elevator; with OO

methodology you define the software pieces, the object “types,”by describing the actual elements

of an elevator system (the pulleys, the cables, the elevators doors, the human user interface, a.k.a. the

“buttons,”etc.).You could also describe the actions of (“methods”) and the interrelationships between

(“interfaces”) these objects in a direct manner, such as PressStopButton or ReleasePulleyWeight.

Fresh Thinking on Databases for Object Development

2 © 2002 Hurwitz Group, Inc. Reproduction without permission strictly forbidden

In addition, OO makes it easy for developers to change solutions to deal with real world

changes. For example,“We’ve decided to build a 10 story building instead of eight stories!”

would result in simple underlying code changes rather than design changes. “We’ve decided

to add another elevator!” could be handled with just another instantiation of the elevator

object class. OO also offered reuse — the elevator object class, and all its related objects, could

easily be reused and repurposed to run an entirely new elevator system.

Similarly, the object database persists the data, information, content, and/or object itself

associated with ReleasePulleyWeight using the tongue of the solution rather than the

computer. Rather than force fitting all information into a handful of predefined data types, like

integer, long, or text (of a certain length), object databases allow developers and database

administrators to define and use data types that directly reflect the real solution — object

types. The object database handles the dirty task of figuring out how to actually physically

configure and store information — this physical information design and implementation

abstraction empowers database experts to remain focused on solutions.

The fact that developers and database designers could work together using the same solution

metaphor made for an enticing productivity story back in the mid-1990s. The fact that object-

based application runtimes could talk to object-based data management runtimes promised

unheard of levels of solution accuracy, maintenance flexibility, and performance.

Early to Market — The Object Database
Despite all the early promise, history has shown that objects did not change the world of

software development, and thus of database engineering, overnight. Four primary inhibitors

prevented object databases from achieving greater market penetration during the 1990s:

! Not enough object developers. Though academic and many software vendor

developers quickly embraced OO in the mid-1990s, the majority of designers,

developers, and database administrators (DBAs) in corporate IT were too heads down

in work to take the time to learn about object-oriented techniques. Eventually, over a

period of five years, corporate developers and database administrators learned about

the power of objects. In the mid-1990s, however, there were simply not enough object

developers in corporate IT who could grasp the value proposition of object databases.

Fresher Information Corporation

© 2002 Hurwitz Group, Inc. Reproduction without permission strictly forbidden 3

! Performance. The object database offloads some of the everyday aspects of database

design and administration by automatically deriving physical database

implementations from object representations. Particularly during the first generation

of object databases, haphazard object design and/or management by developers

could result in performance penalties in the resulting object databases. In those early,

experimental OO days, too often developers persisted their objects indiscriminately

(using a technique sometimes referred to as transparent persistence). They did not

grasp that haphazard object designs and loose object persistence could directly

result in raising the price of achieving desirable performance in the object database.

! Reliability and availability. By the mid-1990s most relational database vendors had

developed a bevy of management tools to enable DBAs to tune performance,

manage backups, automate failover, and in general make relational databases work

with a high degree of reliability. Not all of the relatively youthful object database

vendors invested enough in management tools to ensure high reliability and

availability.

! SQL. Few object databases supported SQL in the mid-1990s. SQL, the lingua franca of

structured data, was and is supported by all of the relational database vendors.

Relational database vendors were not enamored with the idea of losing market share

to the object database upstarts. The lack of SQL support by object databases gave

relational vendors a key advantage in protecting their shares. At the same time, the

relational vendors need to respond in some fashion to the object database challenge,

so they invented a hybrid “object-relational” or O-R database. Though the O-R

database’s support of objects involves force-fitting objects into a limited physical

typing metaphor required by their relational core design, O-R databases support SQL.

Given the commercial environment of the mid-1990s, the total lack of SQL by most

object databases, vs. the partial support of objects by adapted relational databases,

kept most buyers in the O-R camp. No one in the mid-1990s offered the best of both

worlds: pure object support plus complete SQL support.

Now that object development ranks as the norm rather than the exception, has the time come

for an object database renaissance? After all, the object database’s original value premise

remains utterly valid.

Fresh Thinking on Databases for Object Development

4 © 2002 Hurwitz Group, Inc. Reproduction without permission strictly forbidden

An Object Database Renaissance?
Driven to a large degree by the interest and popularity of object-oriented server technologies

like J2EE and Microsoft’s .NET, certainly conditions exist for object databases to make a

compelling comeback. Paradoxically, some of the reasons that object databases were not

chosen in the mid-1990s now will entice buyers to object databases. Specifically:

! Performance. J2EE and .NET are pure object-oriented environments. The objects and

object containers (such as Enterprise JavaBeans, EJBs, in J2EE) go through a

translation known as “mapping” to work directly with SQL-based relational databases.

The extra code associated with the mapping yields a small performance penalty in

each occurrence, but in large, transactional systems, this object-relational mapping

can actually drag performance down by as much as 50%. Much of .NET remains in

beta, but J2EE-based applications, particularly those using J2EE’s more sophisticated

features often handled through application servers, have had to deal with a less than

sterling performance record. Object databases offer a natural performance benefit for

such pure OO, transactional applications because they eliminate the need for mapping.

! Flexibility. O-R databases offer full SQL compliance, but limited object capabilities;

the actual database engine remains optimized to process SQL and relational designs.

Some modern object databases that also support SQL, however, offer the best of both

worlds: If you need full-blown support for objects including classes, inheritance, and

relationships, these object databases offer the widest functionality and best performance;

if you also need SQL support, these object databases can easily support protocols like

JDBC and ODBC, and even native language and platform support in some cases.

Remember, SQL/relational database processing is a simple case of object database processing.

O-R databases must jury-rig their object support into a suboptimized (for objects) SQL/relational

framework. Hurwitz Group sees a number of projects requiring both strongly-typed object (and

data) development, plus a little SQL. How do buyers handle this condition? Object databases

that support SQL offer the best total database flexibility to deal with such challenges.

! Integration. Larger information technology projects usually require more project time

for integration than writing new code or building new data stores. Many integration-

intensive solutions require their own data stores, either as part of the actual integration

requirements (such as joining object-oriented computing resources with SQL resources),

or for persisting value added information resulting from the integration processes. Object

Fresher Information Corporation

© 2002 Hurwitz Group, Inc. Reproduction without permission strictly forbidden 5

databases, particularly those that also support SQL, make natural companions for

such integration intensive projects. Object databases are the perfect candidate

if you need:

! Bridging between object and nonobject resources

! Support of several language bindings (like Java, C, and C++)

! An object-oriented integration solution, including the support of OO design

through standards like UML (unified modeling language)

! Standards-based support for both data representation from internal applications

(SQL) plus external integration (XML)

One object database vendor in particular maintains its natural object database benefits for

pure OO applications, but also fully supports SQL to handle migrated code and/or expertise

limitations, plus XML for external and future integration.

Fresher’s Matisse Bridges the Object-SQL Gap
A San Francisco-based private company founded in December, 1998, Fresher acquired ADB,

Inc., of France, and thus the Matisse database, immediately upon Fresher’s corporate launch.

Matisse has been battled tested, particularly in Europe, for over a decade in huge, mission-

critical transactional applications. Early on, Matisse differentiated itself from other object

databases by excelling at performance and reliability — in fact several nuclear power plants in

France run on Matisse. Matisse’s original design objectives included the ability to run in a real-

time, no downtime, mission-critical environment

Given this heritage, Matisse is a natural for high availability process manufacturing and other

forms of complex real-time applications solutions — particularly those built with C++, Java, C#

or other object oriented languages. Other decision-focused applications, such as broker/dealer

trading systems, high volume and high complexity supply chain management,

telecommunications, and real-time medical systems also benefit from Matisse’s object, SQL,

performance, and reliability story. In addition, multimedia, given its unique indexing and use

case requirements, should fit nicely with Matisse’s value proposition.

Since the acquisition of the Matisse technology, Fresher has taken several significant steps to

optimize Matisse even further to handle the rigors of object-oriented, real-time, high reliability

and performance solutions. The recently released version 5 of Matisse exhibits some of the

following key features and benefits:

Fresh Thinking on Databases for Object Development

6 © 2002 Hurwitz Group, Inc. Reproduction without permission strictly forbidden

! SQL. Matisse fully supports the SQL 2 standard, including stored procedures, triggers,

and object extensions, enabling Matisse to be used in dual mode by object and other

types of developers. Matisse also supplies referential integrity, an absolute must for

relational types of database designs. Matisse’s design also eliminates the typically

clunky handling of complex joins, meaning that Matisse’s SQL may actually out-

perform relational databases with complex table interrelationships.

! Performance. Matisse excels in terms of high scalability, mainly due to its optimized

use of kernel threads, which yield linear or near-linear performance on symmetric

multiprocessing systems (which support multiple, dynamically allocated CPUs).

Matisse also includes sophisticated caching options, plus an abstracted versioning

architecture to optimize hardware-specific performance. In addition, Matisse’s

versioning engine design ensures data consistency even in the most dynamic

transactional environments, meaning it can beat relational databases in performance

in high usage environments.

! Reliability and administration. Matisse possess all the most modern types of

administration utilities, including automated parallel backups (that is, without

administrator intervention and without operational interruption), on-going disk

optimization through dynamic load balancing, and automated caching and space

allocations. It also supports disk mirroring and replication for five 9s reliability. In

addition, its versioning engine guarantees object viability by maintaining all

references, even if an object has been updated real-time.

! Productivity. Of course, Matisse handles objects directly, making it a natural for

applications built using J2EE, .NET, and other object solutions. Matisse, however, also

supports a variety of languages in a language independent fashion, meaning, for

example, that object applications developed in a combination of Java and C++ can

share the same database objects. XML document schemas map perfectly to Matisse

object structures, and Matisse offers an object API to directly handle XML documents.

Matisse also supports automatic loading and mapping of XML documents and

schema in response to SQL queries. Finally, Matisse fully supports high-end media

types, including streaming media, and text indexing for optimized search.

Given the types of advantages Matisse 5.0 offers, Figure 2 illustrates the types of solutions

where organizations might consider deploying Matisse.

Fresher Information Corporation

© 2002 Hurwitz Group, Inc. Reproduction without permission strictly forbidden 7

Figure 2. Database types for solution requirements.

Conclusion
Matisse Is the Natural Match for Object Development
Objects have reached the mainstream. In 2001, virtually the entire Global 1000 uses Java to

some extent, many to a great extent, and the use of other object-oriented development

architectures, such as .NET, and Web Services loom in the near future. For those organizations

that take great care to invest in objected-oriented techniques for building and maintaining

critical solutions, Hurwitz Group suggests you should also take great care in your choice of

database. Certainly for applications making extensive use of objects, particularly in a high

volume transaction or rich media usage environment, the relational or O-R database may not

be the best choice. A high performance, high reliability object database, that eliminates the

object-relational mapping penalty, that also does an excellent job supporting SQL and delivers

the bridge to XML, could prove a far superior choice. Hurwitz Group believes that for many

Fresh Thinking on Databases for Object Development

8 © 2002 Hurwitz Group, Inc. Reproduction without permission strictly forbidden

solutions in many organizations, Matisse will pay off in terms of shorter time-to-market in the

near-term due to shorter database design cycles, and lower TCO over the long-term due to

lower costs required for database maintenance and performance.

Fresher can already point to a long list of references for its Matisse database, particularly in

Europe. Fresher also can boast several key partnerships in Europe with systems integrators and

software vendors. In order to engender success in the United States, Fresher need only

replicate the types of partnerships it has already established in Europe; the reference list,

already international in nature, speaks for itself. Certainly Matisse should look to work with

integrators specializing in mission-critical development projects, and mainly those with strong

J2EE-oriented practices, and those which have committed to enterprise-scale .NET. Matisse

also extends the value proposition of J2EE application servers and development tools, so

those J2EE vendors that most readily work with partners, such as BEA, SilverStream,

Sun/iPlanet, and even Switzerland-like Sybase (even though Sybase has its own database)

might yield synergistic partnerships. IONA and Borland, both leaders in terms of supplying

object middleware, might also help round out, and be rounded-out by, Fresher. It is also

imperative that all database vendors, whether an object, relational, hierarchical, or any other

kind of heritage, keep their eyes focused on XML, for that is currently the highest wave in data

management (albeit unstructured data management).

What makes J2EE so compelling is that it supports an organization’s desire to use the latest in

object-oriented development techniques, yet it does not require organizations to throw away

existing assets. J2EE helps organizations achieve infrastructural and process modernization,

while simultaneously improving ROA (return on assets — of an IT type). Fresher’s Matisse

promises, and delivers, on the same type of value proposition. As the most natural database fit

for large-scale object-oriented solutions, yet also effectively supporting SQL and XML, Matisse

extends the tactical and strategic benefits of object development.

Fresher Information Corporation

© 2002 Hurwitz Group, Inc. Reproduction without permission strictly forbidden 9

111 Speen Street Framingham, MA 01701 T 508 872 3344 F 508 872 3355 www.hurwitz.com

About Hurwitz Group
Hurwitz Group, an analyst, research, and consulting firm, is a recognized leader in identifying

and articulating the business value of technology. Known for its real-world experience, consultative

style, and pragmatic approach, Hurwitz Group provides strategic guidance to its clients by

delivering analysis, market research, custom content, and consulting services. Clients include

Global 2000, software, services, systems, and investment companies.

