
The Database for .NET

Matisse: The best of both worlds

Matisse Software Inc.

© 2003 MATISSE SOFTWARE INC., ALL RIGHTS RESERVED. Matisse is a registered trademark of Matisse software
Inc. Other product or company names mentioned herein may be the trademarks of their respective owners.

2

The object paradigm is now the standard for mod-
eling a wide variety of real-world scenarios.
However, finding a .NET-compatible data reposito-
ry optimized for such applications has become a
stumbling block. While object database manage-
ment systems (ODBMSs) provide the convenience
of transparent persistence of objects, their client-
centric architecture has not scaled well in enter-
prise environments. Relational database manage-
ment systems (RDBMSs) do scale well, but map
objects to two-dimensional relational tables. The
increased overhead can reduce application per-
formance to a crawl.

This article discusses the limits of using these two
types of databases with C# and suggests a better
alternative for .NET - a Post Object-Relational
database that combines the best features of both.
A Post Object-Relational databases shares with
ODBMSs the ability to map data stored in back-
end databases directly into an language-neutral
representation. As with relational systems, a Post
Object-Relational database can scale to meet the
performance requirements of an enterprise-class
.NET application.

ODBMSs: The Hidden Headache of
Transparent Persistence
Finding a database that's both .NET-compatible
and scalable enough for enterprise-class .NET
applications has not been easy. Ideally, a .NET-
compatible database should store .NET objects
whose classes have been declared "persistent-
capable" and can be manipulated seamlessly by
C# or other .NET languages.

That has been the promise of ODBMSs, which
made their appearance in the mid-1990s as a

solution designed specifically for C++ objects and
thus better suited for object development in C++.
With ODBMSs, developers can define persistent
classes in the same way transient classes are
defined in the application.

An apparent advantage of object databases is the
implementation of transparent persistence that
automates the process of mapping persistent data
objects into the data repository. With transparent
persistence, you don't even have to alter your
existing .NET classes to describe the persistent
data that's permanently stored in the database
(see Listing 1). That means you don't have to
decide ahead of time, usually during the design
phase, which objects to include and exclude from
the database.

This convenience quickly becomes a burden, how-
ever, when developing scalable enterprise-class
applications. In a typical application, objects are
highly interconnected, and it's very important to
know precisely which objects have been stored
with the database and which have not. Consider

Microsoft .NET is the platform of choice for implementing scalable
and reliable enterprise applications from reusable components. But
Visual Studio .NET developers building enterprise-class applica-
tions face a quandary.

IObjectSpace oSpace;
// Create an instance of an interface
// to the ObjectSpace.
oSpace =
ObjectSpaceFactory.CreateObjectSpace(dataSource);

// Create objects
Order odr =
(Order) oSpace.CreateObject(typeof(Order),

“Parrot”, 2, 99.95);
Customer cstr =
(Customer) oSpace.CreateObject (typeof(Customer),

"John", "S", "Doe");
// Commit the changes
oSpace.BeginTransaction();
oSpace.Update(odr);
oSpace.Update(cstr);
oSpace.CommitTransaction();

Listing 1: Transparent persistence with an ODBMS

3

an e-commerce application in which products,
customers, and orders are all linked together
(see Figure 1). The object model naturally cap-
tures the interrelationships of real-world applica-
tions. With transparent persistence, you may
wind up loading an entire closure of objects even
though you want to access only a single object.
While the programmer wants to load only one
customer, the closure of instances reachable
from this object recursively loads a large portion
of the database. Loading unneeded data in the
Common Language Runtime (CLR) on client
machines limits concurrency and scalability and
increases network traffic.

ODBMS’s client-centric architecture promotes the
implementation of the system business logic in
the client application – or the middle-tier for a 3-
tier architecture –, while an enterprise-class,
multi-user, transaction-intensive application
requires the business logic to be executed and
stored into the database server to achieve top
performance, enforce security and guarantee
reusability. A simple customer query, for exam-
ple, could move a massive amount of data –
much of it unneeded – into the client application
to filter objects. Such "overloading" is not a
noticeable problem within a standalone environ-
ment that manipulates a small amount of data.
However, in enterprise-class applications with
such architecture operations rate can slow unac-

ceptably as the system starts running under
heavy computational loads, limiting the use of
ODBMSs to a handful of possible applications.

While an object database is convenient to manip-
ulate natively C# objects, the absence or limited
implementation of SQL is usually unacceptable
for enterprise-class applications, which require a
seamless integration with database tools for
reporting and business analytics capabilities.

The hard lesson, often learned at a company’s
expense, is that the ODBMS used to validate a
pilot application must be replaced by a relational
database when the system goes into production.
That's the programming equivalent of a heart
transplant, setting development schedules back
by months. As we will see, relational databases
bring their own set of problems in terms of over-
head, and can require 25-50% more C# code.

RDBMSs: The Frustration of Object-
Relational Mapping

.NET developers are hindered by relational data-
bases; however, RDBMSs do have two major
advantages: a long, successful track record of
deployment in scalable, transaction-processing
systems and a standard language, SQL. While
the relational model works well enough in bank-
ing applications where the row-and-column
model reflects the two-dimensional world of
ledgers and spreadsheets, it has proven more
limited in tracking highly interconnected informa-
tion. Relationship navigation commonly used in
.NET applications requires extensive use of
multi-table joins. But joins are computationally
intensive, and each join is computed at runtime
to link information on-the-fly (see Listing 2).
Reconstructing an order object with its line items
from row-and-column tables requires two SQL
queries and much coding. The same operation in
an object database would require only one call.
Moreover, relational systems require the rebuild-

BusinessConsumer

Customer

Nation

Order

LineItem

Product

Stock

Warehouse

+inStocks

+stocks

+inNation

+products

+lineItems

+warehouses

+inWarehouse

+lineItems

+productInStock

0..n

0..n

1

1

0..n

0..n

0..n

1..n

0..n

1

0..n

+locatedIn

+customers

+orders

+orderedBy

+lineItemOf

Figure 1: UML diagram of a typical e-commerce application

ing of relationships between objects each time
they're accessed, substantially impacting per-
formance.

In today's economy where business intelligence
is key, the .NET object model provides a more
powerful mechanism for capturing real-world
relationships and concept commonalities. In the
relational model the relationships disappear and
are replaced by primary keys; foreign keys,
columns, and indexes; and often by intermediate
tables (see Figure 3).

In response to the demands from object develop-
ers, relational vendors have extended the rela-
tional model to support objects, much the way

C++ was an object extension of C. But just as C
programmers did not fully embrace C++, pro-
grammers have remained skeptical of object
extensions to what is clearly not an object-orient-
ed environment.

The underlying model of object-relational data-
bases remains the same: rows and columns. As
a result, the simplicity of the object model van-
ishes because classes, inheritance, and relation-
ships must be mapped into tables - a structure
ill-suited to the task. Even a simple many-to-
many relationship between two classes must be
expressed using intermediate tables, with two
associated indexes. Therefore, a cleanly
designed .NET application translated through the
normalization process results in a thicket of
tables that must be recombined whenever an
object is called by the application. The process
adds significant load, especially when executing
extensive table joins.

To solve the problem of mapping objects into
relational databases, a number of OR mapping
tools have been created. While these tools do
make it easier to develop .NET applications that
use relational databases, they don't eliminate the
underlying RDBMS problems of code complexity
and poor performance.

Both database technologies have limitations for
.NET programming. A pure object database
makes sense in a standalone environment in
which concurrency and network traffic are not
issues. Relational databases, while accommo-
dating transaction-processing loads, poorly simu-
late a true object environment.

Matisse: The Best of Both Worlds
A Post Object-Relational database like Matisse
represents the best of both worlds: the ability to
map objects from .NET directly to the database
with the support of a standard query language
(SQL-99) and the scalable, enterprise capabili-

4

string select = “SELECT * FROM Order o
WHERE o.odr_id = 10608974”;

IDbCommand dbcmd = conn.CreateCommand();
dbcmd.CommandText = select;
IDataReader reader = dbcmd.ExecuteReader();

// Reconstruct an instance of Order from its rows
if (reader.Read()) {
Order odr = new Order((long) reader["odr_id"],

(string) reader["ship_address"],
(string) reader["ship_carrier"]);

}
reader.Close();
reader = null;
dbcmd.Dispose();

select = “SELECT * FROM lineItem l
WHERE l.odr_id = 10608974 ORDER BY lt_id”;

IDbCommand dbcmd = conn.CreateCommand();
dbcmd.CommandText = select;
IDataReader reader = dbcmd.ExecuteReader();

// Construct objects from rows
while (reader.Read()) {
litem = new LineItem ((string) reader["lt_id"],

(long) reader["quantity"],
(decimal) reader["unit_price"],
(string)reader["delivery_mode"],
(string) reader["address"]);

odr.lineItems.add(litem);
}
reader.Close();
reader = null;
dbcmd.Dispose();

Listing 2: The OR mapping layer adds 25% - 30% of ugly code

ties implemented in relational database products.
Designed from the ground up as a database
server for objects, Matisse directly maps to the
object model of .NET as well as other object pro-
gramming languages. Because the database
object model matches perfectly with .NET, you
can easily define the database classes that
describe real-world scenarios.

Unlike an RDBMS, Matisse preserves the origi-
nal .NET data model. For example, a single class
and two subclasses represent customers, con-
sumers, and business customers, respectively.
No tables are mapped back into .NET objects; no
translation of any kind is needed. Unlike an
ODBMS, Matisse enforces a layered design of
the persistent classes. The operations to manipu-
late objects are explicit, enabling you to keep
tight control over the data that's locked and
instantiated in the CLR, seamlessly improving
the application's scalability.

A Post Object-Relational database like Matisse
eliminates the mismatch between the .NET and
database environments, while still maintaining
the scalability of server-side processing, such as
relational systems. Within the .NET environment,
you manipulate C# objects representing a proxy
to the object in the database by means of object-

to-object mapping. The proxy objects are pure
.NET classes that map to those of the database
schema (see Listing 3). With Matisse, the code
stays compact and object-based (as in Listing 1),
providing the same benefit as a first-generation
ODBMS. It does not require any of the special
compilation tricks or post-processing intermedi-
ate language manipulations of ODBMSs - both of
which make it hard to identify the root cause of
runtime errors and performance degradation.

In a typical application, classes are highly inter-
connected, and the graph of instances can
include large portions of the database. Therefore,
controlling object-locking effectively, always a
challenge in enterprise-class .NET applications,
is crucial to controlling the instantiation of .NET
objects in the CLR. To build scalable applica-
tions, data-intensive processing needs to take
place where the data sits on the server, not on
the client, further reducing locking contention as
well as network traffic and taking advantage of
the faster processing speeds of many server
architectures.

Like RDBMSs, Matisse supports the SQL-99
syntax. While SQL queries are relational in their

syntax, they take advantage of the object para-
digm by supporting inheritance, polymorphism,
and true navigation. Furthermore, the query pro-
cessing takes place on the server to enforce
security and achieve the highest performance.
Consider a broad query of two classes of cus-
tomers: business and consumer. The query is

5

Figure 3: Relational diagram of the e-commerce application

MtDatabase db = new MtDatabase(“DbName”);
db.Open();
db.StartTransaction();
Customer cstr = new Customer(db, "Dee", "O", "Haye");
Order odr = new Order(db, "Parrot", 1, 99.95);
// Link order and customer by a bi-directional
// relationship
odr.setOrderedBy(cstr) ;
db.Commit();
db.Close();

Listing 3: Matisse provides compactness and efficiency

issued from the client, executed on the server,
with selected objects from each class retrieved to
the client.

This approach gives developers full access to
.NET objects through ADO.NET without having to
learn a proprietary API (see Listing 4). In this list-
ing, two customer subclasses, Consumer and
Business, share properties from the parent
Customer class while maintaining properties of
their own. A query to locate "good customers"
can combine criteria - bonus miles for home con-
sumers, a high credit line for businesses - pulling
the information simultaneously from both sub-
classes. Unlike an RDBMS, Matisse returns
.NET objects through ADO.NET and natively
supports inheritance.

While developers still benefit from the power of
expression and performance of SQL queries,
these queries eliminate the object-relational map-
ping layer to reduce source code by 25-50% and
improve application performance.

Unlike first-generation ODBMSs, Matisse can be
accessed through ADO.NET and ODBC drivers,
both of which support the SQL-99 language,
thereby taking advantage of in-house SQL

expertise. Support for ODBC and ADO.NET driv-
ers also allows IT staff to use off-the-shelf data-
base tools without having to master SQL.

Database Design for .NET: Keep It Simple

Building enterprise-class .NET applications with
a Post Object-Relational database like Matisse is
straightforward. Here are some considerations to
make the process even smoother:

- Carefully define the object model of your per-
sistent classes, reflecting the business model as
closely as possible. That's common sense in an
object environment, but is even more crucial in
database applications because the way you
define the model greatly impacts system per-
formance.

-- Defining the right level of granularity for your
objects has a big payoff in terms of transaction
throughput because only the specific queried
data gets accessed and locked.

- Avoid cross-referencing persistent and transient
objects as transient information can access per-
sistent information, but not the other way around.
Doing so makes the application much more com-
plex to manage since the persistent objects
loaded from the database may need to be linked
to transient information that's not yet available.
While a callback can also be used, it unneces-
sarily complicates program flow and can usually
be avoided with more ordered layering of the
application.

- Keep transactions as short as possible. Long
transactions will unnecessarily lock data for long
periods of time, making it unavailable to other
business transactions.

- In some cases, data is cached by the middle-
ware, reducing contention, but it requires "dirty
reads" (reading data without locking) from the

6

string query =
“SELECT REF(c) FROM Customer c “ +
“ WHERE count(orders) > 20” +
“ AND ((class Consumer).bonusMiles > 50000 OR” +
“ (class Business).creditLine > 10000)” +
“ ORDER BY lastName”;

IDbCommand dbcmd = conn.CreateCommand();
dbcmd.CommandText = query;
IDataReader reader = dbcmd.ExecuteReader();
while (reader.Read()) {
// Instances of Consumer or Business are returned
Customer cstr = (Customer) reader.GetObject(1)

}
reader.Close();
dbcmd.Dispose()

Listing 4: With Matisse, SQL queries can return objects, not only tables

database. A way around this is to use Matisse
versioning facility, which allows a consistent view
of the database any time, even while users are
modifying the current version.

Conclusion
A Post Object-Relational database like Matisse
gives developers a new and important option
when selecting a database for their .NET appli-
cation. Until now, .NET developers have really
had just one viable option: an RDBMS. Despite
the drawbacks of the relational model, only
RDBMSs solved the performance requirements
intrinsic to enterprise applications.

With Matisse, Visual Studio .NET developers can
demand both: a database that meets the intrinsic
requirements of scalability, high transaction vol-
umes, high-volume data transfer, and the need
for high throughput, together with an object data
model that more accurately represents business
processes, now and in the future.

As the number of .NET applications grows, the
limitations of RDBMSs and ODBMSs will
become more and more apparent. Post Object-
Relational databases represent the missing
ingredient for broader .NET implementation, pro-
viding reliability and scalability without compro-
mising .NET object environment.

7

Matisse Software Inc.
www.matisse.com
433 Airport Blvd, suite 421
Burlingame, CA 94010
650-548-2581

Download a developer’s version of Matisse 6.0 at www.matisse.com

©2003 Matisse Software Inc. All rights reserved.

